Desmos (Physics)
Numerical Odinary Differential Equation
Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Here, the ODEs in most of these works are in the form \[\frac{d^n}{dt^n}\,\vec{y}\left(t\right)=\vec{f}\left(\vec{y},\vec{y}',\ldots,\vec{y}^{(n)},t\right),\] and if we define a new vector \[\vec{Y}= \begin{pmatrix}\vec{y}\\\vec{y}'\\\vdots\\\vec{y}^{(n-1)}\end{pmatrix} \quad\Rightarrow\quad \frac{d}{dt}\vec{Y}=\begin{pmatrix}\vec{y}'\\\vec{y}''\\\vdots\\\vec{y}^{(n)}\end{pmatrix} =\frac{d}{dt}\vec{Y}\] , we may reduce the equation to \[\frac{d}{dt}\vec{Y}=\vec{F}\left(\vec{Y},y\right),\] where \[\vec{F}\left(\vec{Y},y\right)=\begin{pmatrix}\vec{y}'\\\vec{y}''\\\vdots\\\vec{f}\left(\vec{y},\vec{y}',\ldots,\vec{y}^{(n)},t\right)\end{pmatrix}.\]
Classical Dynamics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. Here, most of these work gover the theme like
- Netonian Mechanics
- Electromagnetism
- Special Relativty
- Orbital mechanics